Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Environ Pollut ; 334: 122191, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451587

RESUMO

The widespread use of neodymium oxide nanoparticles (NPs-Nd2O3) has caused environmental pollution and human health problems, thus attracting significant attention. Understanding the mechanisms of NPs- Nd2O3-induced genetic damage is of great significance for identifying early markers for NPs- Nd2O3-induced lung injury. At present, the mechanisms underlying DNA damage induced by NPs- Nd2O3 remain unclear. In this study, we performed functional assays on human bronchial epithelial cells (16HBEs) exposed to various concentrations of NPs-Nd2O3 and SD rats administered with a single intratracheal instillation with NPs-Nd2O3. Exposure to NPs-Nd2O3 could lead to DNA damage in 16HBE cells and rat lung tissue cells. We found a novel long non-coding RNA, named CNTFR-AS1, which was highly expressed after exposure to NPs-Nd2O3. Our data verified that transcription factor TP63 mediates the high expression levels of CNTFR-AS1, which in turn regulates NPs-Nd2O3-induced DNA damage in cells by inhibiting HR repair. Moreover, the levels of CNTFR-AS1 were correlated with the number of years worked by occupational workers. Collectively, these results demonstrate that CNTFR-AS1 acts as a novel DNA damage regulator in bronchial epithelial cells exposed to NPs-Nd2O3. Hence, our data provide a basis for the identification of lncRNAs as early diagnostic markers for rare earth lung injury.


Assuntos
Lesão Pulmonar , Nanopartículas , RNA Longo não Codificante , Humanos , Animais , Ratos , RNA Longo não Codificante/genética , Fatores de Transcrição , Reparo de DNA por Recombinação , Ratos Sprague-Dawley , Dano ao DNA , Proteínas Supressoras de Tumor , Subunidade alfa do Receptor do Fator Neutrófico Ciliar
2.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 157-161, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224029

RESUMO

This study was performed to analyze the biological behavior of childhood leukemia cells regulated by miR-708 by binding to the 3' UTR end of the target gene and reducing the level of the target gene. In this regard, human leukemia Jurkat cell lines were selected and divided into a control group, miR-708 overexpression group and miR-708 inhibition group. MTT assay was used to detect the cell proliferation inhibition rate, flow cytometry was used to detect the apoptosis rate and cell cycle change, the scratch test was used to detect the cell migration capacity, and Western Blot assay was used to detect the expression of CNTFR, apoptosis and JAK/STAT pathway related proteins. To verify the binding site of miR-708 and target gene CNTFR. The results showed that the cell proliferation inhibition rate, apoptosis rate, G1 phase ratio, Bax protein, and CNTFR protein in the miR-708 overexpression group were significantly lower than those in the control group at each time point, while the S phase ratio, Bcl-2 protein, cell migration ability, JAK3 and STAT3 protein were significantly higher than those in the control group (P<0.05). The results of the miR-708 inhibition group were contrary to those of the miR-708 overexpression group. The binding sites of miR-708 and CNTFR were predicted by TargetScan bioinformatics software. It was found that there were two binding sites of miR-708 and CNTFR, 394-400 bp and 497-503 bp respectively. In conclusion, miR-708 can reduce the expression of CNTFR by binding to the target gene CNTFR3' UTR, activate the JAK/STAT pathway to regulate apoptosis-related proteins, reduce apoptosis, and enhance the migration ability of leukemia cells.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar , Janus Quinases , Leucemia , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Janus Quinases/genética , MicroRNAs/genética , Transdução de Sinais , Fatores de Transcrição STAT , Células Jurkat , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Leucemia/genética
3.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955469

RESUMO

Ciliary neurotrophic factor (CNTF) was identified as a survival factor in various types of peripheral and central neurons, glia and non-neural cells. At present, there is no available data on the expression and localization of CNTF-receptors in cementoblasts as well as on the role of exogenous CNTF on this cell line. The purpose of this study was to determine if cementoblasts express CNTF-receptors and analyze the mechanism of its apoptotic regulation effects on cementoblasts. OCCM-30 cementoblasts were cultivated and stimulated kinetically using CNTF protein (NBP2-35168, Novus Biologicals). Quantified transcriptional (RT-qPCR) and translational (WB) products of CNTFRα, IL-6Rα (CD126), LIFR, p-GP130, GP130, p-ERK1/2, ERK1/2, Caspase-8, -9, -3 and cleaved-caspase-3 were evaluated. Immunofluorescence (IF) staining was applied to visualize the localization of the CNTF-receptors within cells. The apoptosis ratio was measured with an Annexin-V FITC/PI kit. The ERK1/2 antagonist (FR180204, Calbiochem) was added for further investigation by flow cytometry analysis. The CNTF-receptor complex (CNTFRα, LIFR, GP130) was functionally up-regulated in cementoblasts while cultivated with exogenous CNTF. CNTF significantly attenuated cell viability and proliferation for long-term stimulation. Flow cytometry analysis shows that CNTF enhanced the apoptosis after prolonged duration. However, after only a short-term period, CNTF halts the apoptosis of cementoblasts. Further studies revealed that CNTF activated phosphorylated GP130 and the anti-apoptotic molecule ERK1/2 signaling to participate in the regulation of the apoptosis ratio of cementoblasts. In conclusion, CNTF elicited the cellular functions through a notable induction of its receptor complex in cementoblasts. CNTF has an inhibitory effect on the cementoblast homeostasis. These data also elucidate a cellular mechanism for an exogenous CNTF-triggered apoptosis regulation in a mechanism of ERK1/2 and caspase signaling and provides insight into the complex cellular responses induced by CNTF in cementoblasts.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar , Fator Neurotrófico Ciliar , Apoptose , Caspases/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Receptor gp130 de Citocina/metabolismo , Cemento Dentário/metabolismo , Sistema de Sinalização das MAP Quinases , Receptor do Fator Neutrófico Ciliar/metabolismo
4.
Cell Tissue Res ; 390(1): 113-129, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35794391

RESUMO

Ciliary neurotrophic factor (CNTF) is a pleiotropic cytokine that signals through a receptor complex containing a specific subunit, CNTF receptor α (CNTFRα). The two molecules are constitutively expressed in key structures for human placental growth and differentiation. The possible role of CNTF in enhancing cell proliferation and/or invasion during placental development and remodelling was investigated using HTR-8/SVneo and BeWo cells, taken respectively as cytotrophoblast and syncytiotrophoblast models. In both cell lines, treatment with human recombinant (hr) CNTF activated JAK2/STAT3 signalling and inhibited the ERK pathway. Interestingly, in HTR-8/SVneo cells, 50 ng hrCNTF induced significant downregulation of matrix metalloprotease (MMP)-1 and significant upregulation of MMP-9. Moreover, pharmacological inhibition of JAK2/STAT3 signalling by AG490 and curcumin resulted in MMP-9 downregulation; it activated the ERK signalling pathway and upregulated MMP-1 expression. Collectively, these data suggest a role for CNTF signalling in extravillous cytotrophoblast invasion through the modulation of specific MMPs.


Assuntos
Fator Neurotrófico Ciliar , Curcumina , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Metaloproteinase 1 da Matriz , Metaloproteinase 9 da Matriz , Placenta/metabolismo , Placentação , Gravidez , Receptor do Fator Neutrófico Ciliar/metabolismo
5.
Sci Rep ; 12(1): 8331, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585213

RESUMO

To establish whether obesity involves activation of endogenous ciliary neurotrophic factor (CNTF) signalling, we evaluated its plasma levels in patients with obesity and correlated its values with the major clinical and haematological indices of obesity, insulin resistance and systemic inflammation. This study involved 118 subjects: 39 healthy controls (19 men), 39 subjects with obesity (19 men) and 40 subjects with obesity and diabetes (20 men). Plasma CNTF and CNTF receptor α (CNTFRα) were measured using commercial ELISA kits. The results showed that plasma CNTF was significantly higher in males and females with obesity with and without diabetes than in healthy subjects. Women consistently exhibited higher levels of circulating CNTF. In both genders, CNTF levels correlated significantly and positively with obesity (BMI, WHR, leptin), diabetes (fasting insulin, HOMA index and HbA1c) and inflammation (IL-6 and hsCRP) indices. Circulating CNTFRα and the CNTF/CNTFRα molar ratio tended to be higher in the patient groups than in controls. In conclusion, endogenous CNTF signalling is activated in human obesity and may help counteract some adverse effects of obesity. Studies involving a higher number of selected patients may reveal circulating CNTF and/or CNTFRα as potential novel diagnostic and/or prognostic markers of obesity, diabetes and associated diseases.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar , Diabetes Mellitus , Obesidade , Estudos de Casos e Controles , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/sangue , Diabetes Mellitus/sangue , Feminino , Humanos , Inflamação/sangue , Masculino , Obesidade/sangue
6.
Curr Eye Res ; 47(4): 597-605, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34738835

RESUMO

PURPOSE: The purpose of this study was to examine the expression of glial-derived neurotrophic factor (GDNF), the GDNF receptors GFRα1 and GFRα2, ciliary neurotrophic factor (CNTF), and the CNTF receptor CNTFRα in normal and glaucomatous human tissue. METHODS: Human retinas were collected from 8 donors that had been clinically diagnosed and treated for glaucoma, and also from 9 healthy control donors. Immunohistochemical analysis for each trophic factor and receptor was performed. The percent of each retinal section labeled with each antibody was quantified for the total retinal thickness, and separately for the retinal ganglion cell (RGC) complex + retinal nerve fiber layer (RNFL). The expression of each protein was correlated with measures of the subject's ocular histories. RESULTS: The percentage area immunopositive for GFRα2 was significantly decreased in the total retinal thickness containing all retinal layers and in the combined RGC complex + RNFL in glaucomatous eyes in both the peripapillary region and more peripheral retinal locations. We also observed a decrease in GFRα1 expression in the peripapillary RGC Complex + RNFL in glaucoma patients compared to healthy control patients. We also observed a relationship between GDNF and its receptors with several outcomes obtained from the medical record. No differences in CNTF or CNTFR labeling were observed. CONCLUSION: Decreases in GDNF receptor expression in glaucomatous tissue may limit the potential for neuroprotective therapy by supplementation with GDNF.


Assuntos
Glaucoma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Retina , Fator Neurotrófico Ciliar/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Glaucoma/diagnóstico , Glaucoma/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
7.
Int J Biol Sci ; 17(11): 2795-2810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345208

RESUMO

Reactive astrocytes are implicated in traumatic spinal cord injury (TSCI). Interestingly, naïve astrocytes can easily transform into neurotoxic reactive astrocytes (A1s) with inflammatory stimulation. Previous studies demonstrated that microRNA(miR)-21a-5p was up-regulated in spinal cord tissue after TSCI; however, it is not clear whether this affected reactive astrocyte polarization. Here, we aim to detect the effects of miR-21a-5p on the induction of A1 formation and the underlying mechanisms. Our study found that the expression of miR-21a-5p was significantly increased while that of Cntfr α was decreased, since naïve astrocytes transformed into A1s 3 days post-TSCI; the binding site between miR-21a-5p and Cntfr α was further confirmed in astrocytes. After treatment with CNTF, the levels of A1 markers decreased while that of A2 increased. The expression of A1 markers significantly decreased with the downregulation of miR-21a-5p, while Cntfr α siRNA treatment caused the opposite both in vitro and in vivo. To summarize, miR-21a-5p/Cntfr α promotes A1 induction and might enhance the inflammatory process of TSCI; furthermore, we identified, for the first time, the effect and potential mechanism by which CNTF inhibits naïve astrocytes transformation into A1s. Collectively, our findings demonstrate that targeting miR-21a-5p represents a prospective therapy for promoting the recovery of TSCI.


Assuntos
Astrócitos/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/citologia , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Traumatismos da Medula Espinal/patologia , Regulação para Cima
8.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627402

RESUMO

Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.


Assuntos
Quimiocina CCL5/metabolismo , Fator Neurotrófico Ciliar/genética , Regeneração Nervosa , Nervo Óptico/metabolismo , Animais , Sistemas CRISPR-Cas , Quimiocina CCL5/genética , Fator Neurotrófico Ciliar/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Edição de Genes , Terapia Genética , Vetores Genéticos/genética , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/etiologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/metabolismo
9.
Eur J Histochem ; 64(4)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33131268

RESUMO

Ciliary neurotrophic factor (CNTF) is a member of interleukin-6 type cytokine family. The CNTF receptor complex is a heterodimer including gp130 and CNTF receptor α (CNTFRα) proteins triggering the activation of multiple intracellular signaling pathways including AKT/PI3K, MAPK/ERK and Jak/STAT pathways. At present no data are available on the localization of CNTF and CNTFRα in prostate as well as on the role of CNTF in this organ. In this study we have analyzed the localization of CNTF and CNTFRα by immunohistochemistry and we have used PWR-1E cell line as a model for normal glandular cell to investigate the role of this cytokine. Our results show that CNTF and CNTFRa are expressed in the staminal compart of the prostate and that CNTF selectively inhibits ERK pathway. In conclusion, we suggest that CNTF could be considered as key molecule to maintenance epithelium homeostasis via pERK downregulation by an autocrine mechanism. Further CNTF studies in prostate cancer could be useful to verify the potential role of this cytokine in carcinogenesis.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Próstata/metabolismo , Linhagem Celular , Humanos , Imuno-Histoquímica , Masculino , Próstata/citologia
10.
J Strength Cond Res ; 34(11): 3037-3041, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33105352

RESUMO

Homma, H, Kobatake, N, Sekimoto, Y, Saito, M, Mochizuki, Y, Okamoto, T, Nakazato, K, Nishiyama, T, and Kikuchi, N. Ciliary neurotrophic factor receptor rs41274853 polymorphism is associated with weightlifting performance in Japanese weightlifters. J Strength Cond Res 34(11): 3037-3041, 2020-At least 69 genetic markers are associated with power athlete status. In the present study, we investigated the genotype frequency of the ciliary neurotrophic factor receptor (CNTFR) rs41274853 polymorphism and the association between specific CNTFR genotype and weightlifting performance in Japanese weightlifters. One hundred sixty-five Japanese weightlifters (103 men and 62 women) and 338 controls (122 men and 216 women) participated in the present case-control study. Saliva samples were collected using the Oragene DNA self-collection kit and genotyping for the CNTFR (rs41274853) polymorphism was performed using the TaqMan assay. A questionnaire, noting each subject's best record in an official weightlifting competition, was used to obtain the weightlifting performance. The frequencies of the CNTFR genotypes CC, CT, and TT were 56, 32, 12% in the weightlifters, and 53, 40, and 7% in the controls, respectively. There was no significant difference in CNTFR genotype frequencies between the weightlifters and controls. However, the frequency of the CT + TT genotype was significantly higher in international-level weightlifters than in the national-level weightlifters. The relative value per body weight of snatch, clean, and jerk, and total record were significantly higher in the athletes with CT + TT genotype than in the athletes with CC genotype (p < 0.05). Our results suggest that the CNTFR rs41274853 CT + TT genotype is associated with weightlifting performance in Japanese weightlifters. The CNTFR rs41274853 polymorphism may enable coaches to develop tailor-made training programs for individual athletes. In addition, strength and conditioning coaches could benefit from genetic information when assessing potential athletic talents and creating strength training programs for their athletes.


Assuntos
Desempenho Atlético/fisiologia , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Força Muscular/genética , Levantamento de Peso/fisiologia , Adolescente , Adulto , Atletas , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Japão , Masculino , Polimorfismo Genético , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 117(25): 14110-14118, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522868

RESUMO

Interleukin-6 (IL-6) family cytokines signal through multimeric receptor complexes, providing unique opportunities to create novel ligand-based therapeutics. The cardiotrophin-like cytokine factor 1 (CLCF1) ligand has been shown to play a role in cancer, osteoporosis, and atherosclerosis. Once bound to ciliary neurotrophic factor receptor (CNTFR), CLCF1 mediates interactions to coreceptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). By increasing CNTFR-mediated binding to these coreceptors we generated a receptor superagonist which surpassed the potency of natural CNTFR ligands in neuronal signaling. Through additional mutations, we generated a receptor antagonist with increased binding to CNTFR but lack of binding to the coreceptors that inhibited tumor progression in murine xenograft models of nonsmall cell lung cancer. These studies further validate the CLCF1-CNTFR signaling axis as a therapeutic target and highlight an approach of engineering cytokine activity through a small number of mutations.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/agonistas , Citocinas/metabolismo , Engenharia de Proteínas/métodos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/antagonistas & inibidores , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Receptor gp130 de Citocina/metabolismo , Citocinas/química , Citocinas/genética , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Ligantes , Neurônios/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais
13.
Development ; 147(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31932351

RESUMO

Oligodendrocyte development is tightly controlled by extrinsic signals; however, mechanisms that modulate cellular responses to these factors remain unclear. Six-transmembrane glycerophosphodiester phosphodiesterases (GDEs) are emerging as central regulators of cellular differentiation via their ability to shed glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. We show here that GDE3 controls the pace of oligodendrocyte generation by negatively regulating oligodendrocyte precursor cell (OPC) proliferation. GDE3 inhibits OPC proliferation by stimulating ciliary neurotrophic factor (CNTF)-mediated signaling through release of CNTFRα, the ligand-binding component of the CNTF-receptor multiprotein complex, which can function as a soluble factor to activate CNTF signaling. GDE3 releases soluble CNTFRα by GPI-anchor cleavage from the plasma membrane and from extracellular vesicles (EVs) after co-recruitment of CNTFRα in EVs. These studies uncover new physiological roles for GDE3 in gliogenesis and identify GDE3 as a key regulator of CNTF-dependent regulation of OPC proliferation through release of CNTFRα.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Animais , Membrana Celular/metabolismo , Proliferação de Células , Fator Neurotrófico Ciliar/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Transdução de Sinais , Solubilidade , Medula Espinal/embriologia , Medula Espinal/metabolismo
14.
Clin Genet ; 97(1): 209-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31497877

RESUMO

Crisponi/cold-induced sweating syndrome (CS/CISS) is an autosomal recessive disease characterized by hyperthermia, camptodactyly, feeding and respiratory difficulties often leading to sudden death in the neonatal period. The affected individuals who survived the first critical years of life, develop cold-induced sweating and scoliosis in early childhood. The disease is caused by variants in the CRLF1 or in the CLCF1 gene. Both proteins form a heterodimeric complex that acts on cells expressing the ciliary neurotrophic factor receptor (CNTFR). CS/CISS belongs to the family of "CNTFR-related disorders" showing a similar clinical phenotype. Recently, variants in other genes, including KLHL7, NALCN, MAGEL2 and SCN2A, previously linked to other diseases, have been associated with a CS/CISS-like phenotype. Therefore, retinitis pigmentosa and Bohring-Optiz syndrome-like (KLHL7), Congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome (NALCN), Chitayat-Hall/Schaaf-Yang syndrome (MAGEL2), and early infantile epileptic encephalopathy-11 syndrome (SCN2A) all share an overlapping phenotype with CS/CISS, especially in the neonatal period. This review aims to summarize the existing literature on CS/CISS, focusing on the current state of differential diagnosis, pathogenesis and treatment concepts in order to achieve an accurate and rapid diagnosis. This will improve patient management and enable specific treatments for the affected individuals.


Assuntos
Craniossinostoses/diagnóstico , Citocinas/genética , Deformidades Congênitas da Mão/diagnóstico , Hiperidrose/diagnóstico , Deficiência Intelectual/diagnóstico , Receptores de Citocinas/genética , Trismo/congênito , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Craniossinostoses/genética , Craniossinostoses/patologia , Morte Súbita/patologia , Diagnóstico Diferencial , Facies , Deformidades Congênitas da Mão/patologia , Deformidades Congênitas da Mão/terapia , Humanos , Hiperidrose/patologia , Hiperidrose/terapia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Retinite Pigmentosa/diagnóstico , Retinite Pigmentosa/genética , Retinite Pigmentosa/patologia , Escoliose/diagnóstico , Trismo/diagnóstico , Trismo/patologia , Trismo/terapia
15.
Nat Med ; 25(11): 1783-1795, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700175

RESUMO

Proinflammatory cytokines in the tumor microenvironment can promote tumor growth, yet their value as therapeutic targets remains underexploited. We validated the functional significance of the cardiotrophin-like cytokine factor 1 (CLCF1)-ciliary neurotrophic factor receptor (CNTFR) signaling axis in lung adenocarcinoma (LUAD) and generated a high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1, thereby inhibiting its oncogenic effects. eCNTFR-Fc inhibits tumor growth in multiple xenograft models and in an autochthonous, highly aggressive genetically engineered mouse model of LUAD, driven by activation of oncogenic Kras and loss of Trp53. Abrogation of CLCF1 through eCNTFR-Fc appears most effective in tumors driven by oncogenic KRAS. We observed a correlation between the effectiveness of eCNTFR-Fc and the presence of KRAS mutations that retain the intrinsic capacity to hydrolyze guanosine triphosphate, suggesting that the mechanism of action may be related to altered guanosine triphosphate loading. Overall, we nominate blockade of CLCF1-CNTFR signaling as a novel therapeutic opportunity for LUAD and potentially for other tumor types in which CLCF1 is present in the tumor microenvironment.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Proliferação de Células/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Citocinas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/química , Citocinas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucinas/genética , Camundongos , Mutação/genética , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Comp Neurol ; 527(14): 2291-2301, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30861131

RESUMO

Within the supraoptic nucleus (SON) of a 35-day-old rat, we previously demonstrated a collateral sprouting response that reinnervates the partially denervated neural lobe (NL) after unilateral lesion of the hypothalamo-neurohypophysial tract. Others have shown a decreased propensity for axonal sprouting in an aged brain; therefore, to see if the SON exhibits a decreased propensity for axonal sprouting as the animal ages, we performed a unilateral lesion in the 125-day-old rat SON. Ultrastructural analysis of axon profiles in the NL of the 125-day-old rat demonstrated an absence of axonal sprouting following injury. We previously demonstrated that ciliary neurotrophic factor (CNTF) promotes process outgrowth from injured magnocellular neuron axons in vitro. Thus, we hypothesized that the lack of axonal sprouting in the 125-day-old rat SON may be due to a reduction in CNTF or the CNTF receptor components. To this point, we found that as the rat ages there is significantly less CNTF receptor alpha (CNTFRα) protein in the uninjured, 125-day-old rat compared to the uninjured, 35-day-old rat. We also observed that protein levels of CNTF and the CNTF receptor components were increased in the SON and NL following injury in the 35-day-old rat, but there was no difference in the protein levels in the 125-day-old rat. Altogether, the results presented herein demonstrate that the plasticity within the SON is highly dependent on the age of the rat, and that a decrease in CNTFRα protein levels in the 125-day-old rat may contribute to the loss of axonal sprouting following axotomy.


Assuntos
Envelhecimento/metabolismo , Axônios/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Axônios/química , Axotomia/métodos , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/análise , Masculino , Vias Neurais/química , Vias Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Supraóptico/química
17.
Exp Neurol ; 317: 202-205, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30902524

RESUMO

Systemic ciliary neurotrophic factor (CNTF) administration protects motor neurons from denervating diseases and lesions but produces non-neuromuscular side effects. Therefore, CNTF related therapeutics will need to specifically target motor neuron protective receptor mechanisms. Expression of the essential ligand binding subunit of the CNTF receptor, CNTF receptor α (CNTFRα), is induced in skeletal muscle by denervating lesion and in human denervating diseases. We show here, with muscle-specific in vivo genetic disruption, that muscle CNTFRα makes an essential/non-redundant contribution to maintaining choline acetyltransferase levels in denervated motor neurons following nerve crush, suggesting the muscle CNTFRα induction is an endogenous denervation-induced neuroprotective response that could be enhanced to treat nerve lesion and denervating diseases. Notably, unlike motor neuron gene expression, skeletal muscle gene expression can be specifically targeted with human gene therapy vectors already approved for market.


Assuntos
Colina O-Acetiltransferase/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Músculo Esquelético/inervação , Compressão Nervosa
18.
Eur J Neurosci ; 49(9): 1084-1090, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30554447

RESUMO

Expression of the ciliary neurotrophic factor (CNTF) receptor essential ligand binding subunit, CNTF receptor α (CNTFRα), is induced in motor neurons and skeletal muscle following peripheral nerve lesion. We previously found muscle CNTFRα promotes motor neuron axon regeneration post-lesion. Both nerve lesion and CNTF administration activate motor neuron signal transducer and activator of transcription 3 (STAT3), a transcription factor implicated in axon growth, suggesting CNTF receptors may contribute to the lesion-induced STAT3 activation. However, many receptor types signal through STAT3, and if CNTF receptors contribute, motor neuron receptors seemed most likely to regulate motor neuron STAT3. To determine the role played by muscle CNTFRα, we used in vivo, muscle-specific CNTFRα depletion in mice and report here that this selectively impairs the second phase, sustained motor neuron STAT3 activation post-lesion. Thus, muscle CNTFRα makes an essential contribution to motor neuron STAT3 activation during axon regeneration and may thereby promote axon regeneration through such signaling. We also report CNTFRα quantitative PCR suggesting involvement of many denervated muscle types, as well as muscle damaged at the lesion site. The present data add to the evidence suggesting that enhancing muscle CNTFRα expression may promote motor neuron regeneration in trauma and disease.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos , Camundongos Knockout
19.
Virus Res ; 244: 147-152, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29162488

RESUMO

Avian leukosis virus (ALV) induces multiple avian tumors, growth decrease and immune suppression. Previously, a novel natural recombinant ALV isolate FJ15HT0 was proven to be associated with significant body weight decrease, immune suppression and lymphocytoma in infected SPF chickens. In order to uncover the interaction between virus and host, we compared differences in the transcriptomes of the thymuses from the mock chickens and simulated congenitally infected chickens at 5days (d), 13d and 21d of age by RNA-seq analysis of the thymuses. Signaling pathways including cytokine-cytokine receptor interactions, peroxisome proliferator-activated receptor (PPAR) signaling pathway, Janus tyrosine kinase/signal transducers and activators of transcription (Jak-STAT) signaling pathway and fatty acid degradation were involved in the interaction between FJ15HT0 and SPF chickens. Interestingly, fold change of ciliary neurotrophic factor receptor α (CNTFRα) in infected donor collected from 2d to 21d showed a significant positive correlation with the corresponding expression of the viral gp85 gene in thymuses (r=0.656, P<0.01) and in livers (r=0.525, P<0.05). It will provide new insights for the molecular pathogenesis of ALV infection.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/genética , Proteínas Aviárias/genética , Doenças das Aves Domésticas/genética , Timo/virologia , Transcrição Gênica , Animais , Leucose Aviária/imunologia , Leucose Aviária/patologia , Leucose Aviária/virologia , Vírus da Leucose Aviária/crescimento & desenvolvimento , Vírus da Leucose Aviária/metabolismo , Proteínas Aviárias/imunologia , Peso Corporal , Galinhas , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/imunologia , Citocinas/genética , Citocinas/imunologia , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Janus Quinases/genética , Janus Quinases/imunologia , Metabolismo dos Lipídeos , Fígado/imunologia , Fígado/virologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Timo/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
20.
Sci Rep ; 7(1): 7079, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765641

RESUMO

Ciliary neurotrophic factor receptor α subunit (CNTFRα) and CNTF play important roles in neuron survival, glial differentiation and brain tumor growth. However, the molecular mechanisms of CNTFRα regulation and its clinical significance in glioma remain largely unknown. Here, we found CNTFRα was overexpressed in lower grade gliomas (LGG) compared with glioblastoma (GBM) and normal brain specimens in TCGA datasets and in an independent cohort. Bioinformatics analysis revealed a CpG shore of the CNTFRα gene regulated its mRNA expression in TCGA datasets. This observation was further validated with clinical specimens and functionally verified using demethylating agents. Additionally, we observed that independent of IDH mutation status, methylation of CNTFRα was significantly correlated with down-regulated CNTFRα gene expression and longer LGG patient survival. Interestingly, combination of CNTFRα methylation and IDH mutation significantly (p < 0.05) improved the prognostic prediction in LGG patients. Furthermore, the role of CNTFRα in glioma proliferation and apoptosis through the PI3K/AKT pathways was demonstrated by supplementation with exogenous CNTF  in vitro and siRNA knockdown in vivo. Our study demonstrated that hypomethylation leading to CNTFRα up-regulation, together with autocrine expression of CNTF, was involved in glioma growth regulation. Importantly, DNA methylation of CNTFRα might serve as a potential epigenetic theranostic target for LGG patients.


Assuntos
Proliferação de Células , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/biossíntese , Fator Neurotrófico Ciliar/metabolismo , Metilação de DNA , Epigênese Genética , Glioma/patologia , Biologia Computacional , Humanos , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...